INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Physical and Biophysical Chemistry Division

IUPAC RSC Publishing

A Concise Summary of

Quantities, Units and Symbols in Physical Chemistry

Prepared for Publication by Jürgen Stohner and Martin Quack

This list is intended as a ready reference to the symbols most frequently used by authors, teachers and students in chemistry and related disciplines. It is based on the more comprehensive second printing of the third edition of the IUPAC Green Book, "Quantities, Units and Symbols in Physical Chemistry", see References at the end of this document.

1 SI Base Units and Physical Quantities

A physical quantity, Q, is a product of a numerical value $\{Q\}$ and a unit [Q], $Q = \{Q\} \cdot [Q]$. Physical quantities are organized in the International System of Units (SI) which is based on seven base units, listed below, having the same dimension as the associated physical quantities. The symbol for a physical quantity is a single letter of the Latin or Greek alphabet printed in italic (sloping) type. It may be modified by one or more subscripts and superscripts of specified meaning, or by information contained in parentheses. Symbols for units should be printed in Roman (upright) type. Neither symbol should be followed by a full stop (period). The physical quantity amount of substance is proportional to the number of specified elementary entities of a substance; the elementary entities may be chosen as convenient, not necessarily as physical real individual entities (e.g. atoms, molecules, ions, other particles or groups of particles). The proportionality factor is the reciprocal of the Avogadro constant N_A . The amount of substance should not be called 'number of moles'.

Examples for relations between amount of substance and other physical quantities (numerical values are approximate): 2 moles of N₂ contain 12.044 \times 10²³ molecules of N₂, the amount of N₂ equals the number of N₂ molecules divided by $N_{\rm A}$; the mass of 1.5 moles of Hg₂Cl₂ is 708.13 g; 1 mole of photons with frequency 10¹⁴ Hz has an energy of 39.90 kJ; 1 mole of electrons contain 6.022×10^{23} electrons, has a mass of 5.485×10^{-7} kg and a charge of -96.48 kC.

Base Quantity		SI Base Unit			
Name	Symbol	Name	Symbol	Dimension	
length	l	metre	m	L	
mass	m	kilogram	kg	M	
time	t	second	s	T	
electric current	I	ampere	A	1	
thermodynamic temperature	T	kelvin	K	Θ	
amount of substance	n	mole	mol	N	
luminous intensity	$I_{ m v}$	candela	cd	J	

2 Important Quantities with SI Derived Units and Their Special Names and Symbols

	SI derived unit			
Derived quantity	Name	Symbol		f SI base units
plane angle	radian	rad	$\mathrm{m}\;\mathrm{m}^{-1}$	= 1
solid angle	steradian	sr	$\mathrm{m^2~m^{-2}}$	= 1
frequency	hertz	Hz	s ⁻¹	
force	newton	N	${ m m~kg~s^{-2}}$	
pressure, stress	pascal	Pa	${ m N~m^{-2}}$	$= m^{-1} \text{ kg s}^{-2}$
energy, work, heat	joule	J	N m	$=$ m^2 kg s ⁻²
power, radiant flux	watt	W	J s ⁻¹	$=$ m^2 kg s^{-3}
electric charge	coulomb	C	A s	
electric potential	volt	V	J C ⁻¹	$= m^2 \text{ kg s}^{-3} \text{ A}^{-1}$
electric resistance	ohm	Ω	V A ¹	$= m^2 \text{ kg s}^{-3} \text{ A}^{-2}$
electric conductance	siemens	S	Ω^{-1}	$= m^{-2} kg^{-1} s^3 A^2$
electric capacitance	farad	F	$C V^{-1}$	$= m^{-2} kg^{-1} s^4 A^2$
magnetic flux	weber	Wb	Vs	$= m^2 \text{ kg s}^{-2} \text{ A}^{-1}$
magnetic flux density	tesla	T	Wb m^{-2}	$= \text{kg s}^{-2} \text{ A}^{-1}$
inductance	henry	H	$V A^{-1} s$	$= m^2 \text{ kg s}^{-2} \text{ A}^{-2}$
Celsius temperature	degree Celsius	°C	K	
luminous flux	lumen	lm	cd sr	= cd
illuminance	lux	lx	$lm m^{-2}$	$= cd m^{-2}$
activity, (radioactivity)	becquerel	Bq	s-1	
absorbed dose, kerma	gray	Gy	J kg ⁻¹	$= m^2 s^{-2}$
dose equivalent	sievert	Sv	$\rm J~kg^{-1}$	$= m^2 s^{-2}$
catalytic activity	katal	kat	mol s ⁻¹	

rad and sr are derived units of dimension one (dimension-less). In practice, rad and sr may be used or omitted when appropriate and clarity is not lost. rad s⁻¹ or simply s⁻¹ is the unit for angular frequency or angular velocity, this may not be replaced with Hz.

The Celsius temperature t with unit °C is defined by t/°C = T/K - 273.15.

The katal should replace the '(enzyme) unit U', with 1 U = 1 μ mol min⁻¹ \approx 16.67 nkat.

3 SI Prefixes

The prefixes are used to form names and symbols of decimal multiples and submultiples of SI units. Their symbols shall be printed in Roman type without space between prefix and unit symbol. Prefixes shall never be used by their own or combined.

	Pre	efix		Pr	efix		Pr	efix		Pr	efix
Multiple	Name	Symbol	Multiple	Name	Symbol	Submultiple	Name	Symbol	Submultiple	Name	Symbol
1024	yotta	Y	10 ⁹	giga	G	10-1	deci	d	10-12	pico	р
10^{21}	zetta	Z	10^{6}	mega	M	10-2	centi	С	10-15	femto	f
10^{18}	exa	E	10^{3}	kilo	k	10~3	milli	m	10-18	atto	a
10^{15}	peta	P	10^{2}	hecto	h	10^{-6}	micro	μ	10-21	zepto	Z
10^{12}	tera	T	10 ¹	deca	da	10-9	nano	n	10^{-24}	yocto	У

4 Recommended Symbols for Commonly Used Physical Quantities

Several physical quantities have more than one entry in the symbol column for different reasons: (1) The listed symbols are all in use (e.g. p, (P) for pressure and Q, q for heat), but symbols in parentheses are not recommended. (2) Different symbols are used for the same physical quantity in different physical systems (e.g. electron spin quantum number s for a single electron or S for a collection of electrons). (3) Alternative symbols are recommended to avoid conflict in the notation for quantities which otherwise would have the same symbols (e.g. E_a to distinguish the energy of activation from another energy E in the same context). The unit 1 in the SI unit column signifies a dimensionless quantity. A quantity that is additive for independent, non-interacting subsystems is called extensive; examples are mass m, volume V, Gibbs energy G. When

the symbol for the extensive quantity is a capital letter, the symbol used for the specific (meaning divided by mass) quantity is often the corresponding lower case letter (e.g. specific volume v=V/m). A subscript m on the symbol for the extensive quantity denotes the corresponding molar (meaning divided by amount of substance) quantity (e.g. molar volume $V_{\rm m}=V/n$). The subscript m may be omitted when there is no risk of ambiguity.

Subscripts and superscripts are printed in Roman type except when they are symbols for physical quantities. Symbols for units, numbers, labels, chemical elements, elementary particles, mathematical operators and irreducible representations of points groups are printed in Roman type. Vectors are printed in bold-faced italic type; they can alternatively be indicated by an arrow above the symbol.

4.1 Space and Time

Physical Quantity	Symbol	SI unit
Cartesian	x; y; z	m
space coordinates		
position vector	r	m
length	l	m
special symbols:		
height	h	
breadth	b	
thickness	d, δ	
diameter, distance	d	
radius	\widetilde{r}	
path length	8	
length of arc	8	
area	A, A_s, S	m^2
volume	V, (v)	m^3
plane angle	$\alpha, \beta, \gamma, \vartheta, \varphi$	rad, 1
solid angle	Ω , (ω)	sr, 1
time, duration	t	S
period	T	s
frequency	ν, f	Hz, s^{-1}
angular frequency	ω	$rad s^{-1}, s^{-1}$
characteristic	au, T	S
time interval,		
relaxation time,		
time constant		
angular velocity	ω	$rad s^{-1}, s^{-1}$
velocity	v, u, w, c, \dot{r}	$\mathrm{m}~\mathrm{s}^{-1}$
speed	v, u, w, c, \dot{r}	$\mathrm{m}\;\mathrm{s}^{-1}$
acceleration	a	$\mathrm{m}\ \mathrm{s}^{-2}$

4.2 Classical Mechanics

Physical Quantity	Symbol	SI unit
mass	m	kg
reduced mass	μ	kg
density, mass density	ρ	$\mathrm{kg}\ \mathrm{m}^{-3}$
specific volume	v	$\mathrm{m^3~kg^{-1}}$
momentum	\boldsymbol{p}	${ m kg~m~s^{-1}}$
angular momentum	L	Js
moment of inertia	I,J	kg m ²
force	\boldsymbol{F}	N
moment of force, torque	M,(T)	N m
energy	E	J
potential energy	$E_{ m p},V,\Phi$	J
kinetic energy	$E_{\rm k}, T, K$	J
work	W, A, w	J
power	P	W
generalized coordinate	\dot{q}	(varies)
generalized momentum	p	(varies)
Lagrange function	L	Ĵ
Hamilton function	H	J -
action	S	Js
pressure	p,(P)	Pa, N m ⁻²
surface tension	γ, σ	$N m^{-1}, J m^{-2}$
weight	G,(W,P)	N
gravitational constant	G	${ m N~m^2~kg^{-2}}$

4.3 General Chemistry

Physical Quantity	Symbol	SI unit
number of entities	N	1
amount of substance, amount,	n	mol
(chemical amount)		
Avogadro constant	$N_{ m A}, L$	mol^{-1}
mass of atom,	$m_{ m a}, m$	kg
atomic mass		
mass of entity	$m,m_{ m f}$	kg
atomic mass constant	$m_{ m u}$	kg
molar mass	M	kg mol ⁻¹
molar mass constant	$M_{ m u}$	$g \text{ mol}^{-1}$
relative molecular mass,	$M_{ m r}$	1
(relative molar mass,		
molecular weight)		
relative atomic mass,	$A_{\mathbf{r}}$	1
(atomic weight)		
molar volume	$V_{ m m}$	$\mathrm{m}^3 \; \mathrm{mol}^{-1}$
mass fraction	w	1
volume fraction	ϕ	-1
mole fraction, amount-of-	x, y	1
substance fraction,		
amount fraction		
(total) pressure	p,(P)	Pa
partial pressure of B	$p_{ m B}$	Pa
mass concentration	γ, ho	kg m ⁻³
number concentration	C, n	m^{-3}
(amount) concentration	c, [B]	$\rm mol~m^{-3}$
molality	m, b	$mol kg^{-1}$
surface concentration	Γ	mol m ⁻²
stoichiometric number	ν	1
extent of reaction, advancement	ξ	mol

4.4 Chemical Kinetics

Physical Quantity	Symbol	SI unit
rate of change		
of quantity X	\dot{X}	$[X] s^{-1}$
of concentration of B (chemical reaction)	$r_{ m B}, v_{ m B}$	mol m ⁻³ s ⁻¹
rate of conversion rate of reaction based on	έ	$\mathrm{mol}\;\mathrm{s}^{-1}$
amount concentration	v, v_c	$mol_{2}m^{-3}s^{-1}$
number concentration, (reaction rate)	v, v_C	${ m m}^{-3} { m s}^{-1}$
overall order of reaction	m, n	1
rate constant (coefficient)	k, k(T)	$(m^3 \text{ mol}^{-1})^{m-1} \text{ s}^{-1}$
half life	$t_{1/2}$	S
(Arrhenius) activation energy	$E_{\rm A}, E_{\rm a}$	J mol ⁻¹
standard enthalpy of activation	$\Delta^{\ddagger}H^{\Rightarrow}$	J mol ⁻¹
pre-exponential factor, frequency factor	A	$(m^3 \text{ mol}^{-1})^{m-1} \text{ s}^{-1}$
collision cross section	σ	m^2
collision frequency	$z_{\rm A}({\rm A})$	s^{-1}
collision frequency factor	₹AB	$m^3 \text{ mol}^{-1} \text{ s}^{-1}$
quantum yield	Φ, ϕ	1

4.7 (Statistical)	Thermodynamics
	,,	

Physical Quantity	Symbol	SI unit
number:		
nucleon, mass	A	1
proton, atomic	Z	1
neutron	N	1
electroweak charge	$Q_{\mathbf{W}}$	1
decay (rate) constant	λ, k	s^{-1}
ionization energy	$E_{ m i}, I$	J
electron affinity	E_{ea},A	J
dissociation energy	$E_{ m d}, D$	J
quantum number:		
principal	n	1
electron orbital	l, L	1
-component	m_l, M_L	1
electron spin	s, S	1
-component	m_s, M_S	1
total angular momentum	J, F, N	1
-component	M_J, M_F, M_N	1
nuclear spin	I	1
-component	M_I	1
vibrational	v	1
internal vibrational	l,j,π	1
magnetic dipole moment	m, μ	$A m^2, J T^{-1}$
gyromagnetic ratio	γ	$s^{-1} T^{-1}$
nuclear g-factor	$g_{\rm N}$	1
Larmor angular frequency	$\omega_{ m L}$	s^{-1}
quadrupole moment	Q ; ⊖	C m ²
wavelength	λ	m
transition wavenumber	$\widetilde{ u}$	m^{-1}
total term	T	m^{-1}
electronic term	$T_{ m e}$	m ¹
vibrational term	G	m^{-1}
rotational term	F	m^{-1}
rotational constants		
in wavenumber	$\widetilde{A};\widetilde{B};\widetilde{C}$	m^{-1}
in frequency	A; B; C	Hz

4.6 Electricity and Magnetism

Physical Quantity	Symbol	SI unit
electric current	I, i	A
electric current density	j, J	$\rm A~m^{-2}$
electric charge	Q	C
charge density	ρ	$\mathrm{C}\;\mathrm{m}^{-3}$
electric potential	V, ϕ	$V, J C^{-1}$
electric potential difference,	$U, \Delta V, \Delta \phi$	V
electric tension		
electric field strength	E	$V m^{-1}$
electric displacement	D	C m ⁻²
capacitance	C	F, C V ⁻¹
permittivity	ε	F m ⁻¹
relative permittivity	Er	1
dielectric polarization	P	C m ⁻²
electric susceptibility	Χe	1
electric dipole moment	p, μ	C m
magnetic flux density	B	T
magnetic flux	Φ	Wb
magnetic field strength	H	A m ⁻¹
permeability	μ	$N A^{-2}, H m^{-1}$
relative permeability	$\mu_{\mathtt{r}}$	1
magnetization	M	A m ⁻¹
magnetic susceptibility	$\chi, \kappa, (\chi_{\mathrm{m}})$	1
molar magnetic susceptibility	Xm	m ³ mol ⁻¹
electric resistance	R	Ω
conductance	G	S :
resistivity	ρ	Ω m
conductivity	κ, γ, σ	S m ⁻¹
self-inductance	L	H, V s A-1
magnetic vector potential	A	Wb m ⁻¹
Poynting vector	S	$\mathrm{W}\;\mathrm{m}^{-2}$

Physical Quantity	Symbol	SI unit
heat	Q,q	J
work	W, w	J
internal energy	U	J
enthalpy	H	J
temperature		
thermodynamic	$T,(\Theta)$	K
International	T_{90}	K
Celsius	θ , t	°C
entropy	S	$J K^{-1}$
Helmholtz energy	A, F	J
Gibbs energy	G	J
heat capacity	C_p, C_V	$\rm J~K^{-1}$
ratio C_p/C_V	$\gamma, (\kappa)$	1
Joule-Thomson coefficient	$\mu, \mu_{ m JT}$	K Pa ⁻¹
compressibility	ĸ	Pa ⁻¹
cubic expansion coefficient	α, α_V, γ	K^{-1}
chemical potential	μ	$J \text{ mol}^{-1}$
standard reaction Gibbs energy	$\Delta_{\mathrm{r}}G^{\Phi}$	J mol ⁻¹
affinity of reaction	A, A	J mol ¹
fugacity	f,\widetilde{p}	Pa
fugacity coefficient	φ	1
Henry's law constant	k_{H}	Pa
(relative) activity	a	1
activity coefficient		
referenced to Raoult's law	f	1
referenced to Henry's law		
molality basis	m.	1
concentration basis	Ye	1
mole fraction basis	γ_x	1
osmotic coefficient,		
molality basis	ϕ_m	1
mole fraction basis	ϕ_x	1
osmotic pressure	П	Pa
reaction quotient	Q	1
equilibrium constant,		
standard	K^{\oplus}, K	1
pressure basis	K_p	$Pa^{\Sigma \nu_B}$
concentration basis	K_c	$(\text{mol m}^{-3})^{\Sigma\nu_{\text{B}}}$
molality basis	K_m	$(\text{mol kg}^{-1})^{\Sigma\nu_{\text{B}}}$
density of states	$ ho(E,J,\cdots)$	j-1
statistical weight,	g,d,W,ω,eta	1
degeneracy		
partition function,		
single molecule	q, z	1
canonical ensemble,	Q, Z	1
(system, assembly)		
microcanonical	Ω, z, Z	1
grand canonical	Ξ	1
symmetry number	σ, s	1
characteristic temperature	Θ, θ	K

4.8 Electrochemistry

The state of the s		
Physical Quantity	Symbol	SI unit
charge number of an ion	z	1
electrode potential	E, U	V
standard	E^{ullet}	V
cell potential	$E_{\rm cell}$	V
electrochemical potential	$\tilde{\mu}_{\mathrm{B}}^{\alpha}$	J mol ⁻¹
overpotential	η, E_n	V
mean ionic	17 - 17	
activity	a,±	1
activity coefficient	γ±	1
molality	m_{\pm}	mol kg ⁻¹
concentration	c±	mool m ⁻³
ionic strength,		
molality basis	I_m, I	mol kg ⁻¹
concentration basis	I_c, I	mol m'-3
pH	pH	1
electron number of an	z, n	1
electrochemical reaction		
electrokinetic potential	5	V
molar ionic conductivity	λ	S m ² mol ⁻¹
molar conductivity	Λ	S m ² mol ⁻¹
transport number	t	1
electric mobility	u,(m)	$m^2 V^{-1} s^{-1}$

4.9 Electromagnetic Radiation

Physical Quantity	Symbol	SI unit
radiant energy	Q, W	J
radiant intensity	$I_{ m e}$	$\mathrm{W}~\mathrm{sr}^{-1}$
emissivity, emittance	ε	1
absorptance	α	1
reflectance	ρ, R	1
transmittance	au, T	1
absorption coefficient,		
(linear) decadic	a, K	m^{-1}
(linear) napierian	α	m^{-1}
molar (decadic)	ε	$m^2 \text{ mol}^{-1}$
molar napierian	κ	$m^2 \text{ mol}^{-1}$
refractive index	n	1
molar refraction	R	$m^3 \text{ mol}^{-1}$
angle of optical rotation	α	1, rad
absorbance (decadic)	A_{10}	1
absorbance (napierian)	$A_{ m e}$	1
net absorption cross section	$\sigma_{ m net}$	m^2
absorption cross section	$G_{ m net}$	m^2
(integrated net)		

4.10 Transport Properties

Physical Quantity	Symbol	SI unit
flux of mass m	q_m	kg s ⁻¹
heat flux	Φ , P	W
heat flux density	J_q	$\mathrm{W}~\mathrm{m}^{-2}$
flux density of mass	J_m	${\rm kg} \ {\rm m}^{-2} \ {\rm s}^{-1}$
thermal conductivity	λ, k	${ m W} { m m}^{-1} { m K}^{-1}$
coefficient of heat transfer	$h,(k,K,\alpha)$	${ m W} { m m}^{-2} { m K}^{-1}$
thermal diffusivity	a	${ m m^2 \ s^{-1}}$
diffusion coefficient	D	$m^2 s^{-1}$
thermal diffusion coefficient	D^{T}	$m^2 K^{-1} s^{-1}$
viscosity	η	Pa s
kinematic viscosity	ν	$m^2 s^{-1}$

5 Units Outside the SI

5.1 Units Accepted for Use With the SI

The following units are not part of the SI; it is recognized by the CGPM that they will continue to be used in appropriate contexts.

Physical Quantity	Unit	Symbol	Value in SI Units
time	minute	min	60 s
time	hour	h	$3600 \mathrm{\ s}$
time	day	d	86 400 s
plane angle	degree	$^{\circ}$, deg	$(\pi/180)$ rad
volume	litre	l, L	10^{-3} m^3
mass	tonne	t	10^3 kg
energy	electronvolt	eV	$1.602\ 18 \times 10^{-19}\ \mathrm{J}$
mass	dalton, unified atomic mass u	Da, u nit	$1.660~54 \times 10^{-27} \text{ kg}$
length	nautical mile	M	1852 m
	astronomical unit	ua	1.495 98×10 ¹¹ m

5.2 Other Units

These units are still used in older literature although their use is strongly discouraged. They are listed here only to facilitate their identification and conversion to SI units.

Physical			Value in
Quantity	Unit	Symbol	SI Units
length	ångström	Å	10 ⁻¹⁰ m
force	dyne	dyn	10^{-5} N
pressure	standard		
	atmosphere	atm	101 325 Pa
	torr (mmHg)	Torr	133.322 Pa
energy	erg	erg	$10^{-7} \mathrm{J}$
	calorie,	$\operatorname{cal}_{\operatorname{th}}$	4.184 J
	thermochemi	cal	
magnetic	gauss	G	$10^{-4} { m T}$
flux densi	ty		
electric	debye	D	$3.335 64 \times 10^{-30}$ C m
dipole mo	ment		
viscosity	poise	P	$10^{-1} \text{ N s m}^{-2}$
kinematic viscosity	stokes	St	$10^{-4} \text{ m}^2 \text{ s}^{-1}$

6 Values of Some Fundamental Constants

Physical Quantity	Symbol	Value in SI Units
speed of light*	c_0, c	$299\ 792\ 458\ \mathrm{m\ s^{-1}}$
constant:		
atomic mass	$m_{ m u}$	$1.660\ 538\ 782(83)\times 10^{-27}\ \mathrm{kg}$
electric	ε_0	$8.854\ 187\ 817\ \times 10^{-12}\ {\rm F\ m^{-1}}$
fine-structure α	α^{-1}	137.035 999 676(94)
first radiation	c_1	$3.741\ 771\ 18(19)\times10^{-16}\ \mathrm{W\ m^2}$
standard acceleration*	$g_{ m n}$	$9.806~65~{\rm m~s^{-2}}$
magnetic*	μ_0	$4\pi \times 10^{-7} \text{ H m}^{-1}$
molar gas	R	$8.314\ 472(15)\ J\ K^{-1}\ mol^{-1}$
second radiation	c_2	$1.438\ 775\ 2(25)\times10^{-2}\ \mathrm{m\ K}$
Avogadro	N_{A}, L	$6.022\ 141\ 79(30)\times10^{23}\ \mathrm{mol^{-1}}$
Boltzmann	$k, k_{ m B}$	$1.380\ 650\ 4(24)\times10^{-23}\ \mathrm{J\ K^{-1}}$
Faraday	F	$9.648\ 533\ 99(24)\times10^4\ {\rm C\ mol^{-1}}$
Fermi coupling	$G_{ m F}$	$1.166\ 37(1)\times10^{-5}\ \mathrm{GeV^{-2}}$
Planck	h	$6.626\ 068\ 96(33) \times 10^{-34}\ \mathrm{J\ s}$
Rydberg	R_{∞}	$1.097\ 373\ 156\ 852\ 7(73)\times10^7\ \mathrm{m}^{-1}$
Stefan-Boltzmann	σ	$5.670\ 400(40)\times10^{-8}\ \mathrm{W\ m^{-2}\ K^{-4}}$
weak mixing		
angle $ heta_{ m W}$	$\sin^2 \theta_{ m W}$	$0.222\ 55(56)$
elementary charge	e	$1.602\ 176\ 487(40) \times 10^{-19}\ C$
electron mass	$m_{ m e}$	$9.109~382~15(45)\times10^{-31}~\mathrm{kg}$
proton mass	$m_{ m p}$	$1.672\ 621\ 637(83) \times 10^{-27}\ kg$
neutron mass	$m_{ m n}$	$1.674~927~211(84)\times10^{-27}~\mathrm{kg}$
Celsius scale zero*		273.15 K
triple point (H ₂ O)*		273.16 K
molar volume	$V_{\rm m}$	
(ideal gas, $t = 0$ °C)	100	
p = 100 kPa		$22.710 \ 981(40) \ dm^3 \ mol^{-1}$
p = 101.325 kPa		$22.413 \ 996(39) \ dm^3 \ mol^{-1}$
Bohr radius	a_0	$5.291\ 772\ 085\ 9(36) \times 10^{-11}\ \mathrm{m}$
Hartree energy	$E_{ m h}$	$4.35974394(22)\times10^{-18} \text{ J}$
Bohr magneton	$\mu_{ m B}$	$9.274~009~15(23)\times10^{-24}~\mathrm{J}~\mathrm{T}^{-1}$
nuclear magneton	$\mu_{ m N}$	$5.050\ 783\ 24(13) \times 10^{-27}\ \mathrm{J\ T^{-1}}$
* cht	4 4 4	c t

^{*} Those quantities are defined and therefore have no errors.

7 References

E.R. Cohen, T. Cvitaš, J.G. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H.L. Strauss, M. Takami, A.J. Thor, *Quantities, Units and Symbols in Physical Chemistry*, 3rd Edition, IUPAC & Royal Society of Chemistry, Cambridge (2007).

P.J. Mohr, N.B. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633-730 (2006); fundamental physical constants online at http://physics.nist.gov/constants.

CGPM. Le Système International d'Unités (SI), Bureau International des Poids et Mesures, Sèvres, 8th French and English Edition (2006).

ISO Standards Handbook 2. Quantities and units, ISO, Geneva (1993).

C. Amsler et al., *Phys. Lett. B* **667**, 1-1340 (2008); particle properties online at http://pdg.lbl.gov.

Comments are welcome and can be emailed to: juergen.stohner@zhaw.ch

www.zhaw.ch/~sthj

Prof. Dr. Jürgen Stohner

ZHAW Zürich University for Applied Sciences

quack@ir.phys.chem.ethz.ch www.ir.ethz.ch Prof. Dr. Martin Quack ETH Zürich

